e content for students of patliputra university

B. Sc. (Honrs) Part 2paper 3

Subject:Mathematics

Title/Heading of topic:Test for convergence of infinite series

By Dr. Hari kant singh

Associate professor in mathematics

Rrs college mokama patna

2.3 Tests for the convergence of infinite series

1. Comparision Test:

Let $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ be two positive term series such that $u_n \leq kv_n \ \forall \ n$ (where k is a positive number)

Then (i) If $\sum_{n=1}^{\infty} v_n$ converges then $\sum_{n=1}^{\infty} u_n$ also converges.

(ii) If $\sum_{n=1}^{\infty} u_n$ diverges then $\sum_{n=1}^{\infty} v_n$ also diverges.

Example 4 Test the convergence of the following series

$$(i) \sum_{n=1}^{\infty} \frac{1}{n^n} \qquad \qquad (ii) \sum_{n=2}^{\infty} \frac{1}{\log n} \qquad \qquad (iii) \sum_{n=1}^{\infty} \frac{1}{2^n + x} \, \forall x > 0$$

Solution: (i) Here $u_n = \frac{1}{n^n}$ We know that $n^n > 2^n$ for n > 2 Hence $\frac{1}{n^n} < \frac{1}{2^n}$ for n > 2

Now $\sum_{n=1}^{\infty} \frac{1}{2^n}$ is a geometric series $(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots)$ whose common ratio is $\frac{1}{2}$.

Since $\frac{1}{2} < 1 :: \sum_{n=1}^{\infty} \frac{1}{2^n}$ is a convergent series. Thus by comparision test $\sum_{n=1}^{\infty} \frac{1}{n^n}$ is also convergent.

(ii) Here
$$u_n = \frac{1}{\log n}$$
 We know that $\log n < n$ for $n \ge 2$

Hence $\frac{1}{\log n} > \frac{1}{n}$ for $n \ge 2$ $\Rightarrow \frac{1}{n} < \frac{1}{\log n}$ for $n \ge 2$

Now $\sum_{n=1}^{\infty} \frac{1}{n}$ is a divergent series (As p = 1). Thus by comparison test $\sum_{n=2}^{\infty} \frac{1}{\log n}$ is also divergent.

(iii) Here
$$u_n = \frac{1}{2^{n+x}}$$
. Clearly $2^n + x > 2^n$ (as $x > 0$)

$$\therefore \frac{1}{2^{n}+x} < \frac{1}{2^{n}}$$

Now $\sum_{n=1}^{\infty} \frac{1}{2^n}$ is a geometric series $(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots)$ whose common ratio is $\frac{1}{2}$.

Since $\frac{1}{2} < 1 : \sum_{n=1}^{\infty} \frac{1}{2^n}$ is a convergent series. Thus by comparision test $\sum_{n=1}^{\infty} \frac{1}{2^n+x}$ is also convergent.

Example 4 Test the convergence of the series $\sum_{n=1}^{\infty} \left[\frac{1}{n^2} + \frac{1}{(n+1)^2} \right]$

Solution: Here
$$u_n = \left[\frac{1}{n^2} + \frac{1}{(n+1)^2}\right]$$

Clearly
$$\frac{1}{n^2} + \frac{1}{(n+1)^2} < \frac{1}{n^2} + \frac{1}{n^2} < \frac{1}{n^2}$$

Now $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent series (As p = 2 > 1). Thus by comparision test $\sum_{n=1}^{\infty} \left[\frac{1}{n^2} + \frac{1}{(n+1)^2} \right]$ is also convergent.

2. Limit Form Test:

Let $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ be two positive term series such that

 $\lim_{n\to\infty}\frac{u_n}{v_n}=l \ \ (\text{where } l \text{ is a finite and non zero number}).$

Then $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ behave in the same manner i.e. either both converge or both diverge.

Example 5Test the convergence of the series $\frac{1}{3.7} + \frac{1}{4.9} + \frac{1}{5.11} + \dots$

Solution: Here
$$u_n = \frac{1}{(n+2)(2n+5)}$$

Let
$$v_n = \frac{1}{n^2}$$
. Now consider $\frac{u_n}{v_n} = \frac{1}{(n+2)(2n+5)} n^2 = \frac{n^2}{2n^2+9n+10}$

$$\Rightarrow \lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{n^2}{2n^2 + 9n + 10}$$

$$= \lim_{n \to \infty} \frac{1}{2 + \frac{9}{n} + \frac{10}{n^2}} = \frac{1}{2}$$
 (which is a finite and non zero number)

Hence by Limit form test , $\sum_{n=1}^{\infty}u_n$ and $\sum_{n=1}^{\infty}v_n$ behave similarly.

Since
$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges (as $p = 2 > 1$)

$$\therefore \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{1}{(n+2)(2n+5)}$$
 also converges.

Example 6Test the convergence of the series

$$(i)\frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \frac{1}{\sqrt{4}+\sqrt{5}} + \dots (ii)\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n-1}}{n}$$

Solution:(*i*) Here
$$u_n = \frac{1}{\sqrt{n+1} + \sqrt{n+2}}$$

Let
$$v_n = \frac{1}{\sqrt{n}}$$
. Now consider $\frac{u_n}{v_n} = \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n+2}}$

$$\Rightarrow \lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n+2}}$$
$$= \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n} + \sqrt{1 + \frac{2}{n}}}}$$

$$=\frac{1}{\sqrt{2}}$$
 (which is a finite and non zero number)

Hence by Limit form test , $\sum_{n=1}^{\infty}u_n$ and $\sum_{n=1}^{\infty}v_n$ behave similarly.

Since
$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 diverges (as $p = \frac{1}{2} < 1$)

$$\therefore \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} + \sqrt{n+2}}$$
also diverges.

(ii) Here
$$u_n = \frac{\sqrt{n+1} - \sqrt{n-1}}{n}$$

$$= \frac{\sqrt{n+1} - \sqrt{n-1}}{n} \cdot \frac{\sqrt{n+1} + \sqrt{n-1}}{\sqrt{n+1} + \sqrt{n-1}} = \frac{(n+1) - (n-1)}{n\sqrt{n+1} + \sqrt{n-1}} = \frac{2}{n\sqrt{n+1} + \sqrt{n-1}}$$

Let
$$v_n = \frac{1}{n\sqrt{n}} = \frac{1}{n^{3/2}}$$
. Now consider $\frac{u_n}{v_n} = \frac{2\sqrt{n}}{\sqrt{n+1} + \sqrt{n-1}}$

$$= \lim_{n \to \infty} \frac{1}{2 + \frac{9}{n} + \frac{10}{n^2}} = \frac{1}{2}$$
 (which is a finite and non zero number)

Hence by Limit form test , $\sum_{n=1}^{\infty}u_n$ and $\sum_{n=1}^{\infty}v_n$ behave similarly.

Since
$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges (as $p = 2 > 1$)

$$\therefore \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{1}{(n+2)(2n+5)} \text{also converges.}$$

Example 6Test the convergence of the series

$$(i)\frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \frac{1}{\sqrt{4}+\sqrt{5}} + \dots (ii)\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n-1}}{n}$$

Solution:(*i*) Here
$$u_n = \frac{1}{\sqrt{n+1} + \sqrt{n+2}}$$

Let
$$v_n = \frac{1}{\sqrt{n}}$$
. Now consider $\frac{u_n}{v_n} = \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n+2}}$

$$\Rightarrow \lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n+2}}$$
$$= \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n} + \sqrt{1 + \frac{2}{n}}}}$$

$$=\frac{1}{\sqrt{2}}$$
 (which is a finite and non zero number)

Hence by Limit form test , $\sum_{n=1}^{\infty}u_n$ and $\sum_{n=1}^{\infty}v_n$ behave similarly.

Since
$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 diverges (as $p = \frac{1}{2} < 1$)

$$\therefore \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1} + \sqrt{n+2}}$$
 also diverges.

(ii) Here
$$u_n = \frac{\sqrt{n+1} - \sqrt{n-1}}{n}$$

$$= \frac{\sqrt{n+1} - \sqrt{n-1}}{n} \cdot \frac{\sqrt{n+1} + \sqrt{n-1}}{\sqrt{n+1} + \sqrt{n-1}} = \frac{(n+1) - (n-1)}{n\sqrt{n+1} + \sqrt{n-1}} = \frac{2}{n\sqrt{n+1} + \sqrt{n-1}}$$

Let
$$v_n = \frac{1}{n\sqrt{n}} = \frac{1}{n^{3/2}}$$
. Now consider $\frac{u_n}{v_n} = \frac{2\sqrt{n}}{\sqrt{n+1} + \sqrt{n-1}}$

$$\Rightarrow \lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{2\sqrt{n}}{\sqrt{n+1} + \sqrt{n-1}}$$
$$= \lim_{n \to \infty} \frac{2}{\sqrt{1 + \frac{1}{n}} + \sqrt{1 - \frac{1}{n}}}$$

= 1 (which is a finite and non zero number)

Hence by Limit form test , $\sum_{n=1}^{\infty}u_n$ and $\sum_{n=1}^{\infty}v_n$ behave similarly.

Since
$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$
 converges (as $p = \frac{3}{2} > 1$)

$$\therefore \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n-1}}{n}$$
 also converges.

Example 7 Test the convergence of the series

$$(i)\sum_{n=1}^{\infty} \left[(n^3 + 1)^{1/3} - n \right]$$
 $(ii)\sum_{n=1}^{\infty} \sin \frac{1}{n}$

Solution:(i) Here
$$u_n = (n^3 + 1)^{1/3} - n = n \left(1 + \frac{1}{n^3}\right)^{1/3} - n$$

$$= n \left[1 + \frac{1}{3n^3} + \frac{\frac{1}{3}(\frac{1}{3} - 1)}{2!} \cdot \frac{1}{n^6} + \frac{\frac{1}{3}(\frac{1}{3} - 1)(\frac{1}{3} - 2)}{3!} \cdot \frac{1}{n^9} + \cdots \right] - n$$

$$= \frac{1}{3n^2} - \frac{1}{9n^5}$$

Let
$$v_n = \frac{1}{n^2}$$
.

$$\Rightarrow \lim_{n \to \infty} \frac{u_n}{v_n} = \frac{1}{3}$$
 (which is a finite and non zero number)

Since
$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges (as $p = 2 > 1$)

 $\therefore \sum_{n=1}^{\infty} u_n$ also converges (by Limit form test).

(ii) Here
$$u_n = \sin \frac{1}{n}$$
. Let $v_n = \frac{1}{n}$.

Then
$$\lim_{n\to\infty} \frac{u_n}{v_n} = \lim_{n\to\infty} \frac{\sin\frac{1}{n}}{\frac{1}{n}}$$

=1 (which is a finite and non zero number)

Since
$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges (as $p = 1$)

 $\therefore \sum_{n=1}^{\infty} u_n$ also diverges (by Limit form test).