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2.3 Tests for the convergence of infinite series
1. Comparision Test:
Let 20—, U and Y5, v,be two positive term series such that
n < kv, V n(where k is a positive number)
Then (i) If Y5, v,,converges then Y n—, u,also converges.
(i) If )37, u, diverges then ), v ,also diverges.

Example 4 Test the convergence of the following series
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Solution: (i) Here u, = e We know that n™ > 2™ for n > 2
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Now 2n=12_n 1S a geometric series (;+2—2+2—3+ --- )whose common
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Smce ol 06 el = is a convergent series. Thus by comparision test

p e n—n is also convergent.

(ii) Here u, = ﬁ We know that logn <n for n > 2
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Hence —>~-forn>2 =-<—»forn=>2
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Now En 15 “isa divergent series (As p = 1) . Thus by comparision test

Yn=27-— is also divergent.

(iii) Here u,, = 2ﬂ_l+x .Clearly 2" + x > 2" (asx > 0)
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Since % <1lw Z;‘fﬂz—n 1s a convergent series. Thus by comparision test

.
g 1s also convergent.
Zn—l 2N 4x g

Example 4 Test the convergence of the series); -4 [ﬁ 5 2 (n*:l)z]

Solution: Here u,, = [% 23 = +11)2]
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Now Zf{;l% is a convergent series (As p =2>1) . Thus by
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comparision test Y- G s

(n+1)2] is also convergent.

2. Limit Form Test:
Let 25, u,and Y, v,be two positive term series such that

lim =% = | (where [ is a finite and non zero number).

n—oo Vn

Then Y;_; uy,and Y-, v,behave in the same manner i.e. either both
converge or both diverge.
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Example 5Test the convergence of the series o + e +—5 -
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Solution: Here u,, = D (EntE)
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Let v, = —. Now consider = = =
n? vp  (n+2)(2n+5) 2n%+9n+10
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=lim ——3 (which is a finite and non zero number)
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Hence by Limit form test , Y-, u,and Y., v,behave similarly.
Since 2.2 v, = Z;‘f=1n—12converges sp=2>T1)

co oo
aye = .~ ————also converges.
Zn=1Un = Xn=1 (n+2)(2n+5) &

Example 6Test the convergence of the series
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Solution:(i) Here u, = m
Let v, = \/iﬁ . Now consider :—: = %ﬁ
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= é (which is a finite and non zero number)
Hence by Limit form test , Y5, u,and X, v,behave similarly.
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Since Yo Uy = E;Onﬁ diverges (as p =2 < 1)
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S YR W, = _, ————— also diverges.
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(ii) Here u,, = —————
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Let v, = — = —7. Now consider —= =

n\fﬁ - nB/z Un vn+l+yn-1
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Hence by Limit form test , Y-, U,and Y y—, v,behave similarly.

Since .5, ¥, = E;'f;lﬁconverges {as p=2> 1)
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S M= U = E”=1—(n+z) (2n+5)also converges.

Example 6Test the convergence of the series
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— % (which is a finite and non zero number)
Hence by Limit form test , Y —; u,and Yo, v,behave similarly.

Since Yy, Vp = diverges (as p = - < 1)
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W = _; ————— also diverges.
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(ii) Here u,, =
Wn+1-yn-1 Jn+i+yn-1 _ (n+1)-(n-1) 2
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Now consider

Letv, = — = —5. e
nT oavn T R vn  Vn+il+vn-1
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= 1 (which is a finite and non zero number)

Hence by Limit form test , Y,;"_, uyand Y5>, v,behave similarly.

Since) ntq Vp = Zﬁ:l—;f—z converges (as p = % >1)
n

. w VAFI-VA-1
S D Up = En=1T also converges.

Example 7 Test the convergence of the series
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Sincelmei ¥ = Xui —converges (as p = 2 > 1)
o1 Uy also converges (by Limit form test).
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=1 (which 1s a finite and non zero number)
Sicer.> 5. = fo=1i diverges (as p = 1)

o Yim=1 Up also diverges (by Limit form test).



